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Annotation. In this article, on the basis of the Lagrange variation equation, integral-differential equations of 
natural vibrations of a viscoelastic ribbed truncated conical shell are obtained. The general research 
methodology is based on the variational principles of mechanics and variational methods. Geometrically 
nonlinear mathematical models of deformation of ribbed conical shells are obtained taking into account such 
factors as discrete introduction of ribs.  
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Аннотация. В данной статье на основе вариационного уравнения Лагранжа получена интегро-
дифференциальные уравнения собственных колебаний вязкоупругой ребристой усеченной   
конической оболочки. Общая методология исследования базируется на вариационных принципах 
механики и вариационных методах. Получены геометрически нелинейные математические модели 
деформирования ребристых конических оболочек с учетом таких факторов как дискретное введение 
ребер.  
Ключевые слова: коническая оболочка, панель, нелинейная модель, колебания, вязко упругость, 
частотного уравнения, частота. 
 

VISKOELASTIK QOVURG‘ALI KESILGAN KONUSNING 
QOBIG‘INING TEBRANISHLARI 

 

Ishmamatov Matlab Raxmatovich - t.f.n., Navoiy davlat konchilik va texnologiyalar universiteti "Oliy 
matematika va axborot texnologiyalari" kafedrasi dotsenti, Tursinboyeva Zebo Urinboyevna-Navoiy davlat 
konchilik va texnologiyalar universiteti "Oliy matematika va axborot texnologiyalari" kafedrasi katta o'qituvchisi, 
O‘zbekiston respublikasi. 
 

Annotatsiya. Ushbu maqolada Lagranj variatsion tenglamasi asosida qayishqoqelastik qovurg'ali kesik 
konusli qobig'ining ichki tebranishlarining integral-differentsial tenglamalari olingan. Tadqiqotning umumiy 
metodologiyasi mexanikaning variatsion printsiplari va variatsion usullarga asoslangan.  Qovurg'alarning 
diskret kiritilishi kabi omillarni hisobga olgan holda qovurg'ali konus membranalarini deformatsiya qilishning 
geometrik chiziqli bo'lmagan matematik modellari olingan.  
Kalit so'zlar: konussimon qobiq, panel, chiziqli bo'lmagan model, tebranishlar, qayishqoqelastik, chastota 
tenglamalari, chastota. 
 

Introduction. 
Conical shell structures are widely used in rocket, aircraft, shipbuilding and 

construction. To give greater rigidity, the thin-walled part of the shell is reinforced with ribs, 
while a slight increase in the weight of the structure significantly increases its strength, even 
if the ribs have a small height. 
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The study and elimination of resonance phenomena in shells is of great practical 
interest. A significant number of theoretical and experimental works are devoted to the study 
of natural vibrations of circular cones. However, there are still no reliable solutions that allow 
determining the parameters of resonances in a wide range of changes in physical and 
geometric parameters. There are also works in which the theoretical-experimental method 
obtained dependences for determining the resonance frequencies [1] and vibration modes 
of truncated conical panels [2]. Another method is mainly used to study shells, which allow 
one to go from the equations of stability of conical shells to the corresponding equations for 
cylindrical shells with a circular cross section. Many works use moment-free and semi-
momentless shell theories [3]. Approximate methods are also used to solve problems of 
natural vibrations [4]. Particularly difficult are the problems of vibrations of reinforced conical 
shells in a geometrically nonlinear formulation taking into account the rheological properties 
of the material, solutions for which are practically absent. Analysis of the literature shows 
that the existing optimal designs of shells for a given geometric and rheological parameters 
cannot be implemented in practice, the level of research remains only theoretical. In this 
regard, despite the long history of the solution, the problem of determining the resonant 
frequency of natural vibrations, taking into account the structural properties of ribbed shells, 
remains relevant.  

The purpose of this work is to develop a methodology, algorithm and program for 
finding resonant frequencies and waveforms for circular ribbed viscoelastic conical shells 
under various boundary conditions. 

Problem statement and solution methods  

Consider a closed circular conical shell with a taper angle  , thickness h  (Fig. 1) with 

edges l and n (respectively in the longitudinal and annular directions). To obtain the 
equations of natural oscillations, we use the principle of possible Lagrange displacements, 
which takes into account the boundary conditions. 

𝛿(𝐾 + 𝛱 − 𝐴) = 0, 
where K- is the kinetic energy of the shell and the rib, П - is the potential energy of the 
shell and the rib, and A- is the work of external forces. 

The middle surface of the shell is taken as the coordinate surface. The X  of the Y
orthogonal coordinate system directed along the lines of principal curvatures are shown in 
Fig. 1, and the axis is directed orthogonally to the median surface, towards the concavity. 
For a conical shell, the Lamé and curvature parameters given in [5] take the following form 

1=A , sinB x = , ctg
0,x yk k

x


= = . 

 
Figure 1. Truncated conical shell with reinforced ribs 
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Deformations in the shell coordinate surface are expressed through displacements 
along the 𝑢,  𝑣,  𝑤 axes, 𝑥,  𝑦,  𝑧 respectively, as follows 

2

2

 u 1  w
 ;   

 2  

1  v ctg 1 1  w ctg
 v  ;

sin  2 sin  

 v 1  u v  w 1  v ctg
+ v  .

 x sin  y  sin  

xx

yy

xy

x x

u
w

x y x x x y x

x x x x y x



 


 




 

  
= +   
  

  
=  + − +   + 

  

    
= +  −   + 
    

            (1) 

Deformations in a layer at a distance from z  the coordinate surface, taking into 
account the transverse shears, have the form 

(𝑢𝑧 = 𝑢 + 𝑧 ⋅ 𝜓𝑥, 𝑣𝑧 = 𝑣 + 𝑧𝜓𝑦, 𝑤𝑧 = 𝑤) 

1 2 12;   ;   2z z z

x xx y yy xy xyz z z        = +  = +  = +               (2) 

 
and besides  

𝛾xz = 𝑘𝑔(𝑧) ⋅ (𝜓𝑥 +
𝜕 w

𝜕 𝑥 
) ; 𝛾𝑦𝑧 = 𝑘 g(𝑧) ⋅ (𝜓𝑦 +

1

𝑥 𝑠𝑖𝑛 𝜃
⋅

𝜕 w

𝜕 𝑦 
+ 𝑐𝑡𝑔 𝜃

𝑣

𝑥
)   (3) 

 
Here 𝜓𝑥,  𝜓𝑦- the angles of rotation of the normal segment at the coordinate surface in 

sections 𝑋𝑂𝑍 and 𝑌𝑂𝑍, respectively; 𝑔(𝑧)- function that describes the distribution xz and 

yz shear stresses; 𝑘 =const. 

Functions characterizing changes in curvature 𝜒1,  𝜒2and torsion 𝜒12have the form [6] 
 

𝜒1 =
𝜕𝜓𝑥

𝜕𝑥
; 𝜒2 =

1

𝑥 𝑠𝑖𝑛 𝜃
⋅

𝜕𝜓𝑦

𝜕𝑦
+

𝜓𝑥

𝑥
; 2𝜒12 =

𝜕𝜓𝑦

𝜕𝑥
+

1

𝑥 𝑠𝑖𝑛 𝜃
⋅

𝜕𝜓𝑥

𝜕𝑦
−

𝜓𝑦

𝑥
. 

 
Physical relations for an isotropic viscoelastic body take the form [7] 

𝜎𝑥 =
�̃�

1−𝜈2 (휀𝑥
𝑧 + 𝜈휀𝑦

𝑧); 𝜎𝑦 =
�̃�

1−𝜈2 ⋅ (휀𝑦
𝑧 + 𝜈휀𝑥

𝑧);  𝜏𝑥𝑦 =
�̃�

2(1+𝜈)
𝛾𝑥𝑦

𝑧 ; 𝜏𝑥𝑧 =
�̃�

2(1+𝜈)
𝛾𝑥𝑧 ; 𝜏𝑦𝑧 =

�̃�

2(1+𝜈)
𝛾𝑦𝑧. 

Here  - the Poisson's ratio of the shell material, which is considered constant; кЕ
~

- 

operator moduli of elasticity of the conical shell and rib 

�̃�𝑘[𝑓(𝑡)] = 𝐸0к [𝑓(𝑡) − ∫ 𝑅𝐸к(𝑡 − 𝜏)𝑓(𝜏)𝑑𝜏
𝑡

0
]
,      (4) 

кE0 - Young's instant modulus of elasticity (k = 1, 2, 3 ... L); к=1- instantaneous modulus 

of elasticity of the shell, к=2,3... L-instant modulus of elasticity of the ribs, )(tf  - is a 

continuous function; )( −tRЕк - the core of relaxation. 

The physical relations, taking into account the creep of the material (5) on the basis of 
the linear theory of heredity, take the form [7] 

𝜎𝑥 =
𝐸0

1 − 𝜈2
[휀𝑥

𝑧 + 𝜈1휀𝑦
𝑧 − ∫ (휀𝑥

𝑧 + 𝜈1휀𝑦
𝑧)

𝑡

0

𝑅𝐸1(𝑡 − 𝜏)𝑑𝜏] ; 𝜎𝑦

=
𝐸0

1 − 𝜈2
[휀𝑦

𝑧 + 𝜈1휀𝑥
𝑧 − ∫ (휀𝑦

𝑧 + 𝜈1휀𝑥
𝑧)

𝑡

0

𝑅𝐸1(𝑡 − 𝜏)𝑑𝜏] ; 

𝜏𝑥𝑦 =
𝐸0

2(1+𝜈)
[𝛾𝑥𝑦

𝑧 − ∫ 𝛾𝑥𝑦
𝑧𝑡

0
𝑅𝐸2(𝑡 − 𝜏)𝑑𝜏] ;  𝜏𝑧𝑥 =

𝐸0

2(1+𝜈)
[𝛾𝑧𝑥

𝑧 − ∫ 𝛾𝑧𝑥
𝑧𝑡

0
𝑅𝐸2(𝑡 − 𝜏)𝑑𝜏] , 𝜏𝑦𝑧 =

𝐸0

2(1+𝜈)
[𝛾𝑦𝑧

𝑧 − ∫ 𝛾𝑦𝑧
𝑧𝑡

0
𝑅𝐸2(𝑡 − 𝜏)𝑑𝜏]     (5) 
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Here )(),( 21  −− tRtR ЕЕ - are the cores of relaxation. The influence of rib stiffness is 

taken into account using the Dirac impulse function. 
The location and height of the ribs is set by the function 

𝐻(𝑥, 𝑦) = ∑ ℎ𝑗𝑚
𝑗=1 𝛿

_

 (𝑥 − 𝑥𝑗) + ∑ ℎ𝑖𝑛
𝑖=1 𝛿

_

(𝑦 − 𝑦𝑖) − ∑  𝑛
𝑖=1 ∑ ℎ 𝑖 𝑗𝑚

𝑗=1 𝛿
_

 (𝑥 − 𝑥𝑗) 𝛿
_

 (𝑦 − 𝑦𝑖)   

(6) 

Integrating voltages (4) by z , in the range from
2

h
−  to H

h
+

2
, we obtain the forces, 

moments and shear forces reduced to the middle surface of the shell, for a unit length of the 
middle surface 

𝑁𝑥 = �̃�1[(ℎ + 𝐹) ⋅ 휀1 + �̄�𝜓1] ; 𝑁𝑦 = �̃�2[(ℎ + 𝐹) ⋅ 휀2 + �̄�𝜓2] ; 𝑁𝑥𝑦 = �̃�12[(ℎ + �̄�)𝛾𝑥𝑦 +

�̄�𝜓12]; 

𝑀𝑥 = �̃�1 [𝑆휀1 + (
ℎ3

12
+ 𝐽) 𝜓1] ; 𝑀𝑦 = �̃�2 [�̄�휀2 + (

ℎ3

12
+ 𝐽) ⋅ 𝜓2],              (7) 

𝑀𝑥𝑦 = �̃�12 [𝑆𝛾𝑥𝑦 + (
ℎ3

12
+ 𝐽) 𝜓12]; 𝑄𝑥 = 𝑘�̃�13(ℎ + �̄�) ⋅ (𝜓𝑥 +

𝜕𝑊

𝜕𝑥
) ,  𝑄𝑦 = 𝑘�̃�23(ℎ +

�̄�) (𝜓𝑦 +
1

𝑥 𝑠𝑖𝑛 𝜃

𝜕𝑊

𝜕𝑦
+

𝑐𝑡𝑔 𝜃

𝑥
𝑉) 

where 
휀1 = 휀𝑥𝑥 + 𝜈휀𝑦𝑦, 휀2 = 휀𝑦𝑦 + 𝜈휀𝑥𝑥, 𝜓1 = 𝜒1 + 𝜈𝜒2,  𝜓2 = 𝜒2 + 𝜈𝜒1, 𝜓12 = 2𝜒12, 

 

�̃�1[𝑓(𝑡)] = �̃�2[𝑓(𝑡)] =
�̃�

1 − 𝜈2
[𝑓(𝑡)] =

𝐸0

1 − 𝜈2
(𝑓(𝑡) − ∫ 𝑅𝐸(𝑡 − 𝜏)𝑓(𝜏)𝑑𝜏

𝑡

0

), 

 �̃�12[𝑓(𝑡)] = �̃�13[𝑓(𝑡)] = �̃�23[𝑓(𝑡)] =
�̃�[𝑓(𝑡)]

2(1+𝜈)
=

𝐸0

2(1+𝜈)
(𝑓(𝑡) − ∫ 𝑅𝐸(𝑡 − 𝜏)𝑓(𝜏)𝑑𝜏

𝑡

0
). 

𝐹, 𝑆, 𝐽 - are the areas (transverse or longitudinal) of the ribs section per unit length of 
the median surface. The static moment and moment of inertia of the middle surface of the 
shell have the form 

�̄� = ∫ 𝑑𝑧 ; 𝑆 = ∫ 𝑧𝑑𝑧; 𝐽 = ∫ 𝑧2𝑑𝑧.
ℎ 2⁄ +𝐻

ℎ 2⁄

 
ℎ 2⁄ +𝐻

ℎ 2⁄

ℎ 2⁄ +𝐻

ℎ 2⁄

 

Let a transverse dynamic load act on the shell 𝑞(𝑥,  𝑦,  𝑡). Then the unknown desired 

displacement functions 𝑈,  𝑉,  𝑊  and the angles of rotation of the normal 𝜓𝑥,  𝜓𝑦   are 

functions of the following variables 𝑥, 𝑦 and 𝑡. 
The functional of the total energy of deformation of the viscoelastic shell has the form 

𝐽 = ∫ (К − П + 𝐴)𝑑𝑡
𝑡1

𝑡0
       (8) 

Here К - kinetic energy of the system, П  — potential energy of the system, А  - the 
work of external forces, were 

К =
𝜌

2
∫ ∫ ∫ [(�̇�𝑧)2 + (�̇�𝑧)2 + (�̇�𝑧)2]

ℎ

2
+𝐻

−
ℎ

2

𝑏

0

𝑎

𝑎1
𝑥 𝑠𝑖𝑛 𝜃 𝑑𝑥𝑑𝑦 𝑑𝑧 =

𝜌

2
∫  

𝑎

𝑎1
∫ [(ℎ + 𝐹)(�̇�2 + �̇�2 + �̇�2) +

𝑏

0

2𝑆(�̇��̇�𝑥 + �̇��̇�𝑦) + (
ℎ3

12
+ 𝐽) (�̇�𝑥

2 + �̇�𝑦
2)]𝑥 𝑠𝑖𝑛 𝜃 𝑑𝑥𝑑𝑦   (9) 

 

Э = П − 𝐴 =
1

2
∫  

𝑎

𝑎1
∫ [𝑁𝑥휀𝑥𝑥 + 𝑁𝑦휀𝑦𝑦 + 𝑁𝑥𝑦𝛾𝑥𝑦 + 𝑀𝑥𝜒1 +

𝑏

𝑜
𝑀𝑦𝜒2 + 2𝑀𝑥𝑦𝜒12 +𝑄𝑥 (𝜓𝑥 +

𝜕𝑤

𝜕𝑥
) + 𝑄𝑦 (𝜓𝑦 +

1

𝑥 𝑠𝑖𝑛 𝜃
⋅

𝜕𝑤

𝜕𝑦
+

𝑐𝑡𝑔 𝜃

𝑥
𝑣) − 2𝑞𝑤] 𝑥 𝑠𝑖𝑛 𝜃 𝑑𝑥𝑑𝑦    (10) 

 
In the above formulas  - shell material density; in expressions (9) and (10), the dots 

denote the derivatives of the variable t ; 𝑏 = 2𝜋 - for a conical shell. 

The energy can be expressed in terms of deformations, then the expression (10) is 
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represented as follows 

Э =
�̃�

2(1−𝜇2)
∫ ∫ [(ℎ + 𝐹)(휀𝑥𝑥

2 + 휀𝑦𝑦
2 + 2𝜇휀𝑥𝑥휀𝑦𝑦 + 𝜇1𝛾𝑥𝑦

2𝑏

0

𝑎

𝑎1
+

5

6
𝜇1 (𝜓𝑥 +

𝜕𝑤

𝜕𝑥
)

2

+
5

6
𝜇1 (𝜓𝑦 +

1

𝑥 𝑠𝑖𝑛 𝜃

𝜕𝑤

𝜕𝑦
+

𝑐𝑡𝑔 𝜃

𝑥
𝑣)

2

) + 2�̄�(𝜒1휀𝑥𝑥 + 𝜒2휀𝑦𝑦 + 𝜇𝜒2휀𝑥𝑥 + 𝜇𝜒1휀𝑦𝑦 + 2𝜇1𝛾𝑥𝑦𝜒12) + (
ℎ3

12
+ 𝐽) (𝜒1

2 +

𝜒2
2 + 2𝜇𝜒1𝜒2 + 4𝜇1𝜒12

2 ) − 2(1 − 𝜇2)
𝑞

𝐸
𝑤] 𝑥 𝑠𝑖𝑛 𝜃 𝑑𝑥𝑑𝑦    (11) 

where 𝜇1 =
1−𝜈

2
. If the conical viscoelastic shell is closed, then 𝑎1 = 0. 

Consider a reinforced conical shell with narrow edges. The problem under 
consideration is solved in dimensionless parameters. Then the basic relationship takes the 
following form 

𝜉 =
𝑥

𝑎
,  𝜂 =

𝑦

𝑏
,  𝜆 =

𝑎

𝑏𝑥 𝑠𝑖𝑛 𝜃
,  𝜆 =

𝜆1

𝜉
,  �̄� =

𝑎𝑢

ℎ2
, 

�̄� =
𝑏𝑥 𝑠𝑖𝑛 𝜃 𝑣

ℎ2
,  �̄� =

𝑤

ℎ
, �̄�𝑥 =

𝑎𝜓𝑥

ℎ
, �̄�𝑦 =

𝑏𝑥 𝑠𝑖𝑛 𝜃𝜓𝑦

ℎ
, 

�̄� =
𝑎

ℎ
,  �̄� =

𝑎4𝑃

𝐸ℎ4 ,  �̄� =
ℎ

𝑎2 √
𝐸0

(1−𝜈2)𝜌
𝑡,  𝐹 =

�̄�

ℎ
, 𝐽 =

�̄�

ℎ2 ,  𝐽 =
𝐽

ℎ3  (12) 

then we get the following expressions for kinetic and potential energies 

К̄ =
1

�̄�2 ∫  
1

𝑎1
∫ [(1 + �̄�) (�̇̄�2 + 𝜆2�̇̄�2 + �̄�2�̇̄�2) + 2�̄� (�̇̄��̇̄�𝑥 + 𝜆2�̇̄��̇̄�𝑦) +

1

0
(

1

12
+ 𝐽) (�̇̄�𝑥

2 +

𝜆2�̇̄�𝑦
2)] 𝜉𝑑𝜉𝑑𝜂      (13) 

Э̄ = ∫  
1

�̄�1
∫ [(1 + �̄�) (휀̄2 + 𝜆4휀�̄�𝑦

2 + 2𝜈𝜆2휀�̄�𝑥휀�̄�𝑦 + 𝜇1𝜆2�̄�𝑥𝑦
2 +

5

6
𝜇1�̄�2 ⋅ (�̄�𝑥 +

𝜕�̄�

𝜕𝜉
)

2

+
1

0

5

6
𝜇1𝜆2�̄�2 ⋅

(�̄�𝑦 +
𝜕�̄�

𝜕𝜂
+

𝑐3

𝜉
�̄�)

2

) + 2�̄̄�(�̄�1휀�̄�𝑥 + 𝜆4�̄�2휀�̄�𝑦 + 𝜈𝜆2�̄�2휀�̄�𝑥 + 𝜈𝜆2�̄�1휀�̄�𝑦 + 2𝜇1𝜆2�̄�𝑥𝑦�̄�12) + (
1

12
+ 𝐽) ⋅

(�̄�1
2 + 𝜆4�̄�2

2 + 2𝜈𝜆2�̄�1�̄�2 + 4𝜇1𝜆2�̄�12
2 ) − 2(1 − 𝜈2)�̄��̄�]𝜉𝑑𝜉𝑑𝜂   (14) 

 
The variational equation, for a thin viscoelastic shell supported by edges of the l - and 

j - directions, is obtained as a variation from the sum of potential and kinetic energies, taking 
into account the conjugation condition [8, 9] 

 

𝛿𝐾 + ∑ 𝛿𝐾𝑙 + ∑ 𝛿𝐾𝑙 +𝑛
𝑗=1 𝛿Э + ∑ 𝛿Э𝑙

𝑚
𝑙=1

𝑁
𝑙=1 = 0, 𝑁 = 𝑛 + 𝑚   (15) 

 
where Э𝑙 = П𝑙 − 𝐴𝑙 - the potential difference of external forces and work applied to the 
edges. This sum contains as many terms of equations (15) as there are edges in the 
corresponding directions. Thus, in relation to the considered ribbed shell, the Lagrange 
principle can be formulated as follows [10]: actual displacements of the median surface of 
the shell 𝑢,  𝑣,  𝑤  and edges 𝑢𝑚,  𝑣𝑚 , 𝑤𝑚(𝑚 = 𝑘, 𝑗) , corresponding to these boundary 

conditions and the load, and transferring the shell from its natural position to a state of elastic 
equilibrium, differ from all possible displacements in that they inform the system in question 
of the minimum amount of potential energy. 

The proper oscillations of a conical shell with freely supported at the ends are 
considered. 

Thus, the mathematical formulation of the problem is formulated and the basic relations 
of viscoelastic conical shells with their own vibrations are given, which take into account 
geometric nonlinearity, discrete introduction of viscoelastic ribs, their shear and torsional 
stiffness, transverse shifts and inertia of rotation. 

 
Solution methods. 
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It is assumed that the integral terms in (4)–(6) are small. Then for the function )(tf  

there is a function 𝑓(𝑡) = 𝜙(𝑡)𝑒−𝑖𝜔𝑅𝑡
 and integral terms are replaced by the following 

expressions[16] 

�̄�к𝜙 = 𝐸0к[1 − 𝛤к
С(𝜔𝑅) − 𝑖𝛤к

𝑆(𝜔𝑅)]𝜙, 

where ( ) ( ) ( ) ( )


==
00

sin,cos  dRdR RЕR

S

RЕR

C  

responsible for the cosine and sine of the Fourier transform, R - the actual value. The 

calculations use a three - parameter Koltunov - Rzhanitsyn kernel 
 

𝑅𝑘(𝑡) = 𝐴𝑘𝑒−𝛽𝑘𝑡/𝑡1−𝛼𝑘 
 

To calculate the dynamic characteristics of the truncated conical shells, taking into 
account the geometric nonlinear terms (1) - (4), we neglect and use the finite element 
method (FEM) in displacements. Consider 8-node isometric curved finite elements (FE), the 
so-called "degenerate" shell element [11]. The element is designed to calculate shells of 
medium and small thickness with ribs. The geometry of the FE represents a curved 
parallelepiped in three-dimensional space with a linear surface in thickness. Used local 

 ,,  and global cartesian х, у, z coordinate systems.  The coordinates of an arbitrary point 

of the FE are expressed in terms of the coordinates of the nodal points ir  
and components 

of the unit normal vector in . Finite element representation of the equilibrium equations of a 

finite element system in a state of motion, taking into account (5), (6), (9) and (15) has the 
form [12]. 

 
[𝑀]{�̈�} + [�̄�(𝜔𝑅)]{𝑞} + {𝑅} = 0,                              (16) 

 

where [𝑀] = ∑ [𝑚𝑖𝑗]𝑛
𝑖,𝑗=1 - matrix mass of the system ([𝑚𝑖𝑗] = 𝛼1[𝑚𝑖𝑗]

𝑎
+ 𝛽1[𝑚𝑖𝑗]

𝑝
,  [𝑚𝑖𝑗]

𝑎
- 

elements matrix of masses of a truncated conical shell, [𝑚𝑖𝑗]
𝑝

- elements matrix of the 

masses of the reinforcing rod, ( 11, -dimensionless coefficients), {𝑅}- vector of external 

loads, [�̄�(𝜔𝑅)]- system stiffness matrix  ([𝐾] = ∑ [𝑘𝑖𝑗]𝑛
𝑖,𝑗=1 -stiffness matrix of the conical shell 

panel and the reinforcing rod), {𝑞}- unknown nodal movements, {𝑅}- vector of external 

loads. The mass matrix (16) is consistent: structure of the mass matrix [𝑀] = ∑ [𝑚𝑖𝑗]𝑛
𝑖,𝑗=1

 completely coincides with the structure of the stiffness matrix. Both matrices 

([𝑀],[�̄�(𝑞𝑡, 𝜔𝑅)]) have size (NxN), which corresponds to the number of degrees of freedom 
of the FE. 

It is assumed that  R =0, then the proper oscillations of the truncated conical shell are 

considered. The solution (16) is sought in the form 
{𝑞} = {𝑄𝐴}𝑒−𝑖𝜔𝑡      (17) 

where {𝑄𝐴}- amplitudes of unknown nodal displacements, complex value; IR i += - the 

complex frequency to be determined. 
Substituting (17) into (16), we obtain the following homogeneous algebraic equation 

(−𝜔2[𝑀] + [𝐾(𝜔𝑅, 𝑞∘)]){𝑄𝐴} = 0     (18) 
The complex roots of the frequency equation (18) are determined by the Muller 

method, at each iteration of the Muller method, the Gauss method is applied with the 
allocation of the main element [13]. 
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Numerical results and analysis 
The radii (large and small), the height and thickness of the shell, the angle of the semi-

solution of the truncated cone, the modulus of elasticity, the Poisson's ratio, the parameters 
of the relaxation core of the material and the geometric and mechanical parameters of the 
edges should be set as initial data. As the relaxation core of a viscoelastic material, we take 

a three-parameter core 𝑅(𝑡) =
𝐴𝑒−𝛽𝑡

𝑡1−𝛼
 
Rzhanitsyn–Koltunova [14], which has a weak 

singularity. Here  ,,A - parameters of materials. 

Table 1. Frequency change depending on the thickness of the shell 

n h 
IR i +=  

R  I− 10-2 

1 0.05 1.94894 1.77381 

2 2.18942 2.57321 

3 3.44160 2.90566 

4 3.92574 3.04574 

1 0.02 1.31147 1.42621 

2 1.53439 2.49433 

3 3.54578 2.98778 

4 4.12429 3.21429 

1 0.01 1.05218 1.22718 

2 1.26867 1.36860 

3 3.55691 3.45697 

4 4.53974 3.65924 

 
Viscoelastic truncated conical shells are considered, in which the large bases are 

pivotally supported, and the second bases are freely supported on the conical shell. A 
conical shell supported by 4 ribs, 4h high and 2h wide (the lengths of the arcs between the 

ribs are the same- 2/asi =  ). 

All ribs are viscoelastic with the same rheological properties. The parameters of a 

truncated conical shell made of plexiglass have the following values: taper angle   =0.20, 

0.40, 0.60, 0.80, radii of the base of the truncated conical shell -  мамa 18,151 ==  (the 

length of the shell is 10 meters). The physical and mechanical characteristics of the rib and 

shell, respectively, take the following values:𝜌с = 7,8 ⋅ 103 кг

м3
, 𝜌0 = 3 ∗ 103 кг

м3
, 𝜈с = 0.25, 𝜈0 =

0.35 , Ec= 2х1012 gPа, Е0=20х1012 Pа. The values of rheological parameters are taken 
as: 𝐴 = 0,048; 𝛽 = 0,05; 𝛼 = 0,1 

Table 1 shows the complex values of the lower frequencies of a dissipatively 
homogeneous reinforced (with four rods) truncated conical shell at different shell 
thicknesses in the limit of the Kirchhoff-Love hypothesis. The values of the complex natural 
frequency and the corresponding forms of oscillations are determined when both ends of 

the shell contour are pivotally supported ( 011 ===== WVUMN ). In the case under 

consideration, axisymmetric oscillations correspond to the minimum natural frequencies 
(real parts of complex frequencies).  Analysis of the calculation results allows us to conclude 
that with a decrease in the thickness of the viscoelastic conical shell, in its real and imaginary 
parts, the first and second oscillation frequencies are monotonically killed. The real parts of 
the third and fourth frequencies decrease moderately, and the corresponding imaginary 
parts gradually increase. The results of calculations of homogeneous viscoelastic 
mechanical systems are shown in Fig.2 and 3. 
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Fig. 2. Change of the parameter (real part) of the complex frequency of truncated 

conical shells of rotation depending on n at various  : 1.  =0; 2.  =0.20;3.  =0.40; 

4.  =0.60; 5.  =0.80. 

 
As can be seen from Fig. 2 and Fig. 3, reinforcement of the shell with four longitudinal 

ribs makes it possible to increase the real and imaginary parts of the natural frequency of 
the truncated conical shell.  Parameter   =0- corresponds to a reinforced cylindrical shell, 

 =0.20, 0.40, 0.60, 0.80 – correspond to the taper angle of the reinforced truncated conical 

shell. 
Taking into account the rheological properties of the material allow you to increase (or 

decrease) the frequency values of the shell up to 10%. For bending vibrations, there is a 
significant decrease in the local maxima of normal displacements with an increase in the 
area of the annular edges of the shell. 

 
Fig. 3. Change of the parameter (imaginary part) of the complex frequency of the 

truncated conical shell depending on n at various  : 

 =0; 2.  =0.20;3.  =0.40; 4.  =0.60; 5.  =0.80. 

This effect becomes more noticeable with an increase in the frequency number n. 
 
Conclusion. 
1. Algorithms for solving the problems of natural vibrations of shells for ribbed 

viscoelastic conical shells have been developed.  The finite element method, the freezing 
method, and the Muller and Gauss methods are used to solve dynamic problems; 

2. Analysis of the calculation results shows that with a decrease in the thickness of the 
viscoelastic conical shell, the real and imaginary parts of the first and second oscillation 
frequencies monotonically decrease. The real parts of the third and fourth frequencies 
decrease moderately, and the corresponding imaginary parts gradually increase; 



Journal of Advances in Engineering 
Technology Vol.3(11), 2023 

 ENGINEERING 

 

© Journal of Advances in Engineering Technology               Vol.3(11), July-September, 2023 

2
2

 

3. Taking into account the geological properties of the material allow you to increase 
(or decrease) the frequency values of the shell up to 10%. 
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