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Annotation. This research utilizes a proprietary dataset consisting of images captured from cotton fields
in the Republic of Karakalpakstan. A new annotated image dataset from cotton fields in the Nukus district
was developed to compare the performance of YOLOv8 and YOLOvV9 models in multi-class weed
detection. YOLOv9c has outperformed the competing model YOLOv8m with respect to overall accuracy
(mMAP@0.5 = 0.865). YOLOV9c is therefore more appropriate for ongoing precise weed management
during real-time applications. YOLOv8m, however, may still be deployed on energy-efficient hardware.
Keywords: YOLOvV8, YOLOV9, weed detection, cotton production, deep learning, computer vision, mAP,
precision agriculture, image dataset.

Annotatsiya. Ushbu tadgiqot Qoraqalpog'iston Respublikasidagi paxta dalalaridan olingan tasvirlardan
iborat mulkiy ma'lumotlar to'plamidan foydalanadi. Nukus tumanidagi paxta dalalaridan olingan yangi
izohli tasvir ma'lumotlar to'plami YOLOv8 va YOLOvV9 modellarining ko'p sinfli begona o'tlarni
aniglashdagi samaradorligini taqgoslash uchun ishlab chigilgan. YOLOv9c umumiy aniqglik bo'yicha
ragobatchi YOLOv8m modelidan ustun keldi (AP@0.5 = 0.865). Shuning uchun YOLOv9c real vaqt
rejimida qo'llaniladigan dasturlarda begona o'tlarni aniq boshgarish uchun ko'proq mos keladi. Biroq,
YOLOv8m hali ham energiya tejaydigan uskunalarda go'llanilishi mumkin.

Kalit so'zlar: YOLOv8, YOLOV9, begona o'tlarni aniglash, paxta ishlab chigarish, chuqur o'rganish,
kompyuter ko'rish, mAP, aniqg gishloq xo'jaligi, tasvir ma'lumotlar to'plami.

AHHOTauuA. B pgaHHOM umccnegoBaHMM UCMNONb3YeTCA COOCTBEHHbIM Habop AaHHbIX, COCTOALWMWA U3
n3obparkeHuin xnonkosbIx nonen B Pecnybnuke KapakannakctaH. [ins cpaBHEHWS NPON3BOANTENBHOCTU
mogenern YOLOv8 n YOLOV9 B MHOroKnaccoBoM OOHapyXeHun COpHAKOB Obin pa3paboTaH HOBbIN
aHHOTUPOBaHHLIN Habop [AaHHbIX M300pakeHWn XIonkoBbIX Monen Hykycckoro panoHa. Mogenb
YOLOvV9c npeB3owwuna KoHkypupytowyo mogens YOLOv8m no obuwen todHoctn (MAP@O0.5 = 0.865).
Takum obpasom, YOLOvOc 6Gonblie noaxoauT ANAs TOYHOrO YMpPaBfEHUs COPHSAKaMU B pexunme
peanbHoro BpemeHW. OpgHako YOLOv8m moxeT ObiTb pasBepHyTa Ha 3HeproadddeKTUBHOM
obopynoBaHun.

KnroueBble cnoBa: YOLOvV8, YOLOVY, obGHapyxXeHWe COpHSIKOB, MPOM3BOACTBO XJOMka, rrnybokoe
obyueHune, KOMMbIOTEPHOE 3peHne, MAP, ToYHOe 3emnenenve, Habop AaHHbIX N30DpaXXEeHUN.

Introduction

Weeds take up space, nutrients, water, and light that would otherwise help cotton grow
well. As a result, cotton growers will frequently lose money on speed of harvest and
produce less cotton than expected [1].

Recent progress in deep learning and computer vision gives rise to new opportunities
for field-based automation of weed identification and categorization. Across the broad
landscape of computer vision methodologies, detection-oriented neural architectures
particularly the lineage derived from the YOLO (You Only Look Once) paradigm have
emerged as a prominent research focus[2][3].

Prior studies have demonstrated the feasibility of applying YOLO-based models for
multi-class weed detection in cotton fields. For example, the dataset presented in
CottonWeedDetl12 contains 5,648 images collected under natural field conditions and
annotated with 9,370 bounding boxes covering 12 common weed species in cotton
production systems [1]. Similarly, recent works such as YOLO-WDNet and Cotton
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Weed-YOLO build upon YOLO architectures to improve detection accuracy while
reducing computational load - a critical requirement for real-world agricultural
applications [4, 5].

Many existing datasets and studies were conducted in agro-climatic zones different
from Central Asia, and they may not fully reflect the weed species composition, soil
background, illumination conditions, and crop management practices typical for regions
such as Uzbekistan. As well, weed species frequently display significant morphological
inequality during growth phases, from seedling to mid-grown, leading to proper
identification in the field more challenging. One recent study found that though models
were trained on a variety of images from several years, model performance diminished
significantly when attempting to classify multiple growth stages of Amaranthus palmeri
(i.,e., Palmer Amaranth) within cotton. This significant decrease indicates the
considerable difficulty in accurately generalizing across multiple phenological changes
[6].

As a result, it proves crucial to develop and evaluate datasets and detection models that
are unique to local conditions. In this work, we collected a region-specific dataset from
the cotton-growing fields of the Nukus district (Republic of Karakalpakstan). Our
sampling took place throughout two farming seasons, following plants as they grew so
we could observe realistic changes in both their form and surroundings. Given the
tradeoffs between accuracy, computational complexity, and real-time inference speed,
we selected two mid-sized YOLO variants - YOLOv8m and YOLOvV9c - to conduct a
comparative analysis under identical training conditions.

The main purpose of this study is to collect and label images of cotton, the most
common weeds, and other plants found in cotton fields in Central Asia particularly in
Uzbekistan, test how well YOLOv8 and YOLOV9 can recognize different types of weeds
in real field conditions, see if these models can work fast enough for real time use in the
field, such as on farming robots or smart equipment; and find the current challenges and
suggest how the dataset and models can be improved in the future.

Methodology

RGB images of plants were colleted from cotton fields in Nukus district, Rebuplic of
Karakalpakstan in two seasons. The first collection campaign took place in April-May
2024, approximately 15-20 days after cotton sowing, resulting in 225 RGB images.
Then, to increase the number of images in the dataset 856 more pictures of cotton and
weeds were collected in 2025. This time pictures were taken in different growth stages
of cotton (June-August) to fully capture morphological and physiological features of the
plants.This two-season sampling strategy allowed representation of early vegetative to
mid-growth phases of both cotton and weed species. Images were captured using a
Xiaomi 11 Lite 5G NE smartphone (6944x9280 px resolution). To simulate typical
viewpoints for mobile agricultural robots, the camera was positioned at heights of 50 cm
and 100 cm with 80-90° viewing angles relative to the soil surface. All images were
recorded in JPG format. After taking a close look at image quality, we filtered out any
that lacked clarity, and ultimately arrived at a refined dataset of 1,081 strong, usable
images.

Target classes and annotation procedure. Our dataset focuses on eight biologically and
agriculturally meaningful classes encompassing cotton (Gossypium spp.) and seven
major weed species widely distributed across the Republic of Karakalpakstan’s cotton-
producing fields, which makes them critical priorities for automated identification.
Annotations were performed manually on the Roboflow platform using rectangular
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bounding boxes. The result of this careful quality assurance process is a dataset
comprising 4,411 rigorously validated objects.

The specific taxonomy and quantitative distribution of instances per class are detailed in
Table 1.

Table 1.

Distribution of labeled instances across target classes.
Common name Scientific name Count
Cotton Gossypium spp. 2,177
Large Crabgrass Digitaria sanguinalis 1,385
Common Reed Phragmites australis 228
Field Bindweed Convolvulus arvensis 162
Cocklebur Xanthium strumarium 151
Lambsquarters Chenopodium album 128
Velvetleaf Abutilon theophrasti 70
Other weeds Weed spp. (Mixed) 110
Total 4,411

In real fields, weed emergence is rarely orderly some patches are dense with weeds
while others have almost none.

Preprocessing and dataset partitioning. We reformatted each image to 640x640 pixels
while maintaining its original geometry with aspect-ratio-aware padding in order to strike
a balance between processing requirements and visual accuracy. Whereas an
beginning arbitrary part was connected, stratification was afterward presented to adjust
regular variety and phenological differences over subsets. The final dataset partition
was: 1) Training set: 744 images. 2) Validation set: 167 images. 3) Test set: 170
images.

Data augmentation

We adopted a two-step augmentation strategy to prepare the model for the
unpredictable nature of field imagery, helping it recognize plants accurately even when
circumstances differ from the training data. Crucially, all geometric augmentations
(rotation, translation, scaling, mosaic, copy-paste) were applied consistently to both the
image pixel data and the corresponding bounding box coordinates to maintain label
accuracy.

Augmentation before training process (Pre-training). Applied via the Roboflow platform
to expand the base dataset before training commences. Pre-export image preparation
modifications are summarized in Table 2.

Table 2.
Pre-export image preparation modifications.
Modification Description
Rotations at 90° | Images were rotated at 90 increments (clockwise, counter-
increments clockwise, upside down).
Random rotation Random rotation between —13 and +13.
Hue adjustment Hue adjusted in a range from —23 to +23.
Saturation Saturation adjusted between —30% and +30%.
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adjustment
Brightness Brightness enhanced between 0-15%.
enhancement

Augmentation during the training process included dynamically by the Ultralytics YOLO
engine during the training pipeline:

Mosaic (enabled, disabled last 10 epochs)

Horizontal flip (p = 0.5)

HSV augmentation (h = 0.015, s = 0.7, v=0.4)

Translation = 0.1

Scaling = 0.5

Random erasing = 0.4

Copy-paste augmentation

Randaugment

Both augmentation strategies were applied uniformly across all tested YOLO versions
(YOLOVS8: n, s, m, |, x; YOLOV9: c, e) to ensure a fair comparative analysis.

All models were trained using the Ultralytics YOLO framework on a high-performance
workstation tailored for deep learning tasks. To handle the demanding nature of deep
learning tasks, we used a powerful workstation built for Al research. In our lab to train
our models we used computer with this specification an Intel Core i9-12900K CPU and
128 GB of DDR5 RAM with a Gigabyte GeForce RTX 4090 GPU (24 GB VRAM), giving
us the processing strength needed for our experiments. High-speed storage was
delivered by two 2 TB Samsung 980 PRO NVMe SSDs, which kept data loading quick
and helped minimize waiting between training runs.

Each YOLO model was trained under identical hyperparameters to ensure fair
evaluation, the information about hyperparameters is detailed in Table 3.

Hyperparameters for training YOLOv8 and YOLOV9 algorithms Teble s
Hyperparameter Value
Epochs 150
Batch size 16 (YOLOvV9c used 32)
Image size 640 x 640
Optimizer AdamWw
Learning rate 0.001
Pretrained weights Yes
Mixed precision Enabled
Early stopping patience 50 epochs

Evaluation metrics. The performance of the proposed object detection models was
evaluated using standard metrics, namely precision, recall, and mean Average
Precision (mAP) [1, 2]. In straightforward terms, accuracy answers the address, of
everything the demonstrate stamped as positive, how numerous were rectify (1).
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Review answers, of all the positives that exist, how numerous did the demonstrate
discover (2). Both depend on genuine positives as the numerator but vary in what they
compare against. The mean Average Precision (mAP) is calculated as the mean of the
average precision (AP) values across all object classes (3).

Precision = True Positive "
True Positives + False Positives
— True positive
Recall = True Positives + False Negatives (2)

mAP = () x (4P)" 3)

Results and Discussion

Table 4 summarizes the global detection performance of the YOLOv8 and YOLOvV9
model families for multi-species weed detection. Looking across the YOLOvV8 variants,
precision was consistently high (0.804-0.849), recall followed closely (0.709-0.797),
and mAP@0.5 results also remained strong at 0.790-0.826. YOLOv8m achieved the
best overall balance, with precision of 0.837, recall of 0.797, and the highest mMAP@0.5
(0.826) as well as the highest mMAP@][0.5:0.95] (0.634) among the YOLOVS8 variants.
Despite its enhanced expressive capability leading to a slightly superior
MAP@][0.5:0.95] value of 0.612, YOLOv8x did not transcend YOLOv8m in overall
accuracy. Strong performance in actual agricultural settings is largely dependent on
how well the models architecture handles data since this is crucial for enabling the
system to adapt to various field conditions without sacrificing accuracy.

The YOLOvV9 models outperformed YOLOV8 in almost all global metrics. Relative to
YOLOv8m, YOLOvV9c exhibited notable performance enhancements, attaining 0.880
precision, 0.832 recall, and 0.865 mMAP@0.5, which constitute respective increments of
3.8, 3.5, and 3.9 percentage points. In contrast, YOLOv9e achieved a higher
MAP@][0.5:0.95] of 0.663, reflecting improved multi-threshold localization behavior.
These improvements are consistent with recent studies where enhanced YOLOvS8
architectures for cotton weed detection also surpassed baseline YOLO variants in terms
of MAP and F1 score while remaining suitable for field deployment [10, 11, 12].
YOLOvBm and YOLOv9c were deemed the most suitable for deeper evaluation
because they deliver a strong speed-accuracy balance relative to other configurations.
Looking ahead, we plan to extend this research by testing the latest YOLO versions and
validate their operational effectiveness through on-site field trials.

Table 4.

Evaluation metrics of YOLOv8 and YOLOvV9 architectures for weed detection

YOLO models Precision Recall | mAP@0.5 | mAP@][0.5:0.95]
YOLOvS8 YOLOV8n 0.826 0.709 0.790 0.583
YOLOvVS8s 0.849 0.719 0.809 0.579
YOLOv8m | 0.837 0.797 0.826 0.634
YOLOvSI 0.804 0.721 0.817 0.595
YOLOvV8x 0.846 0.749 0.815 0.612
YOLOV9 YOLOV9c 0.880 0.832 0.865 0.640
YOLOV9e 0.825 0.785 0.849 0.663
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