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Аннотация. В настоящей статье даны постановки, развиты методы решения и получены численные 
результаты для новых задач стационарного напряжённого состояния бесконечно длинных 
цилиндрических оболочек на упругом (акустическом) основании при движении вдоль оси оболочки 
не осесимметричной волны нормального давления с до резонансной скорости. Методы решения 
основаны на совместном применении интегрального преобразования Фурье (или метода 
фундаментальных решений) по осевой координате и разложении всех заданных н искомых величин 
в ряды Фурье по угловой координате. Разработан и реализован на ЭВМ эффективный алгоритм 
совместного вычисления интегралов и рядов Фурье. 
Ключевые слова: оболочка, ряды Фурье, давления, жидкость, преобразования Фурье, скорость. 
 
Annotatsiya: Bu maqolada nosimmetrik normal bosim to'lqini qobiq o'qi bo'ylab rezonans tezligi bilan 
harakat qilganda elastik (akustik) asosdagi cheksiz uzun silindrsimon qobiqlarning statsionar kuchlanish 
holatining yangi masalalari uchun formulalar berilgan, hal qilish usullari ishlab chiqilgan va raqamli natijalar 
olingan. Yechish usullari integral Furye qatori (yoki fundamental echimlar usulini) eksenel koordinata 
bo'ylab birgalikda qo'llash va barcha berilgan va qidirilayotgan kattaliklarni burchak koordinatasi bo'ylab 
Furye qatoriga yoyishga asoslangan. Integral va Furye qatorlarini birgalikda hisoblashning samarali 
algoritmi ishlab chiqilgan va kompyuterda joriy qilingan. 
Kalit so’zlar: qobiq, Furye qatori, bosim, suyuqlik, Furye obrazi, tezlik. 
 
Abstract: In this article, formulations are given, solution methods are developed, and numerical results are 
obtained for new problems of the steady-state stress state of infinitely long cylindrical shells on an elastic 
(acoustic) foundation during the motion of a non-axisymmetric normal pressure wave along the shell axis 
with a resonant velocity. The solution methods are based on the combined application of the integral Fourier 
transform (or the method of fundamental solutions) with respect to the axial coordinate and the expansion 
of all specified and unknown quantities in Fourier series with respect to the angular coordinate. An efficient 
algorithm for the combined calculation of integrals and Fourier series has been developed and implemented 
on a computer. 
Key words: shell, Fourier series, pressure, liquid, Fourier transforms, velocity. 

 
Введение. 
 
Действие не осесимметричной (или осесимметричной) подвижной волны нормального 
давления на цилиндрическую оболочку, взаимодействующую с заполнителями 
рассмотрена в работах [1,2]. Собственные колебания и распространение свободных 
волн в цилиндрических оболочках, взаимодействующих с жидкостью, 
исследовались многими авторами, в частности в работах [3,4]. При этом 
рассматривались осесимметричные и не осесимметричные задачи, применялись 
различные модели для жидкости и оболочки. Вопрос о действии подвижной волны 
давления на цилиндрическую оболочку, заполненную или окруженную жидкостью, 
менее изучен, причем было рассмотрено только осесимметричное нагруженные [5]. 
В настоявшей работа изучается действия движущейся нормального внутреннего 
давления на цилиндрическую оболочку. 
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Методология 
 
В данном подразделе с помощью интегрального преобразования по осевой 
координате и рядов Фурье по углу получено решение задачи о движении вдоль 
бесконечно длинной цилиндрической оболочки, взаимодействующей с идеальной 
сжимаемой жидкостью нормального давления, произвольного по длине и 
окружности, но неизменного во времени профиля. Скорость движения нагрузки 
постоянна и в подразделе она рассматривается в случае, когда она меньше 
скорости звука в жидкости. Жидкость заполняет полость между оболочкой радиуса 
𝑎 и со стенкой с ней жесткой цилиндрической стенкой радиуса 𝑏(𝑏 >< 𝑎). Не 
осесимметрично движение оболочки описывается уравнениями следующими 
уравнениями  

𝐿𝑖𝑗к𝑈⃗⃗ 0𝑘 − ∫ 𝐿𝑖𝑗к𝑅𝐸к(𝑡 − 𝜏)𝑈⃗⃗ 0𝑘(𝑟 , 𝜏)
𝑡

0
𝑑𝜏 =

(1−𝜈0к
2)

𝐺0кℎ0к
𝑃⃗ к + 𝜌0к

(1−𝜈0к
2)

𝐺0к

𝜕2𝑈⃗⃗ 0𝑘

𝜕𝑡2
. (𝑘 = 1,2) (1) 

Здесь индекс 𝑘 = 1 относится к внутреннему оболочку (или цилиндру), а 𝑘 = 2 - к 

внешнему оболочку, 𝑈⃗⃗ 𝑘 - вектор перемещения точек срединной поверхности 
несущего слоя. Для оболочек Кирхгофа – Лява вектор перемешенный имеет 
размерность, равную трем. Для выполнения гипотезы типа Тимошенко, 

размерность вектора 𝑈⃗⃗ 𝑘перемещений равна пяти. Линейной уравнение движения 
заполнителя рассматриваемой механической системы в векторной форме при 
отсутствии объемных сил принимает вид: 

𝜆0к𝑔𝑟𝑎𝑑𝑑𝑖𝑣𝑢⃗ (𝑟 , 𝑡) + 𝜇0к(𝛻
2𝑢⃗ (𝑟 , 𝑡) + 𝑔𝑟𝑎𝑑𝑑𝑖𝑣𝑢⃗ (𝑟 , 𝑡)) − 

−𝜆0к ∫ 𝑅𝜆𝑘

𝑡

0

(𝑡 − 𝜏)𝑔𝑟𝑎𝑑𝑑𝑖𝑣𝑢⃗ (𝑟 , 𝜏)𝑑𝜏 − 

−𝜇0к ∫ 𝑅𝜇𝑘

𝑡

0

(𝑡 − 𝜏)(𝛻2𝑢⃗ (𝑟 , 𝜏) + 𝑔𝑟𝑎𝑑𝑑𝑖𝑣𝑢⃗ (𝑟 , 𝜏))𝑑𝜏 = 𝜌к

𝜕2𝑢⃗ 

𝜕𝑡2
, 

(к = 1, 2,3… . . 𝑁) (2)  

где 𝑟 = 𝑟 (𝑥, 𝑦, 𝑧, 𝑡); 𝑅𝜆𝑘(𝑡 − 𝜏), 𝑅𝜇𝑘(𝑡 − 𝜏) – ядро релаксации; 𝜆к0, 𝜇к0 – мгновенные 

модули упругости; 𝑢⃗ –вектор перемещений; 𝜌к-плотность среды; к - порядковой 
номер слоев, 𝜈к − коэффициент Пуассона, которого считаем не релаксирующей 
величиной [6].  
Не осесимметрично движение оболочки типа Тимошенко описывается 
уравнениями (1), (2) причем в компонентах вектора нагрузок отличен от нуля лишь 

член 𝑝3 = −
1−𝑣

2𝐺ℎ
(𝑞𝑟 ∓ 𝑝𝑟), где знак минус отвечает случаю 𝑏 > 𝑎,  а плюс −𝑏 < 𝑎. 

Движение идеальной сжимаемой жидкости описывается волновым уравнением 
𝜕2𝜑

𝜕𝑟2 +
1

𝑟

𝜕𝜑

𝜕𝑟
+

1

𝑟2

𝜕2𝜑

𝜕𝜃2 +
𝜕2𝜑

𝜕𝑥2 =
1

𝑐1
2

𝜕2𝜑

𝜕𝑡2 .     (3) 

где 𝜑 - потенциал скоростей; 𝑐1 - акустическая скорость звука в жидкости;𝑝0 - 
плотность жидкости. 
Задача сводится к совместному интегрированию уравнений (1), (2) и (3) при 
выполнении граничных условий непроницаемости оболочки и жесткой стенки 

𝑑𝜑

𝑑𝑟
|𝑟 = 𝑎 =

𝜕𝑤

𝜕𝑡
;
𝑑𝜑

𝑑𝑟
|𝑟 = 𝑏 = 0      (4) 

При этом входящее в (1.3) давление со стороны жидкости выражается через 
потенциал скоростей по формуле 

𝑞𝑟 = −𝑝0
𝜕𝜑

𝜕𝑡
|𝑟 = 𝑎      (5) 

Рассматривая установившийся процесс, переходим в уравнениях движения 
оболочки и жидкости к системе координат. Компоненты вектора внешних нагрузок 
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для цилиндрической оболочки, подчиняющие гипотезе Кирхгофа – Лява имеют 
следующий вид  

{𝑃1𝑘, 𝑃2𝑘 , 𝑃3𝑘} = −{𝑝𝑧𝑘 + 𝑞𝑧𝑘, 𝑝𝜃𝑘 + 𝑞𝜃𝑘, 𝑝𝑟𝑘 + 𝑞𝑟𝑘} 
где знак минус зависит от выбора координатных осей. В работе для внутренней 
оболочки нагрузка минус, а для наружной плюс взяли. Здесь 𝑞𝑧𝑘,𝑞𝜃𝑘,𝑞𝑟𝑘- 
компоненты напряжения реакции со стороны заполнителя; 𝑝𝑧𝑘,𝑝𝜃𝑘,𝑝𝑟𝑘 - 

интенсивность внешней нагрузки в соответственно по направлению 𝑧, 𝜃, 𝑟. 
Движущейся вместе с нагрузкой, и применяем преобразование Фурье по 𝜂. В 
пространстве изображении решение преобразованных уравнений ищется в виде 
рядов Фурье по угловой координате 𝜃. Предполагая, что трансформанты заданной 
нормальной нагрузки и давления жидкости разложимы в ряды Фурье по 𝜃. 

{𝑢0, 𝜔0, 𝜓𝑥
0, 𝑝𝑟

0, 𝑞𝑟
0} = ∑{𝑢𝑛

0 , 𝜔𝑛
0, 𝜓𝑥𝑛

0 , 𝑝𝑟𝑛
0 , 𝑞𝑟𝑛

0 } 𝑐𝑜𝑠( 𝑛𝜃);

∞

𝑛=0

 

 

{𝑣0, 𝜓𝑦
0} = ∑ {𝑣𝑛

0, 𝜓𝑦𝑛
0 } 𝑠𝑖𝑛( 𝑛𝜃).∞

𝑛=1   (6) 

Подставляя (3.4) в преобразованные уравнения движения оболочки, получаем 
систему алгебраических уравнений для коэффициентов Фурье трансформант 
перемещений срединной поверхности. В этой системе неизвестными являются 
коэффициенты разложения давления жидкости, которые должны быть выражены 
через коэффициенты нормального перемещения оболочки. Представляя 
трансформанту потенциала скоростей в виде (3.4) и подставляя в преобразованное 
уравнение (1), приходим к уравнению 
 

𝜕2𝜑𝑏
0

𝜕𝑟∗
2 +

1

𝑟∗

𝜕𝜑𝑛
0

𝜕𝑟∗
− [

𝑛2

𝑟∗
2 + [1 − 𝑀2]𝜉2] 𝜑𝑛

0 = 0     (7) 

 

где 𝑀 =
𝑐

𝑐1
 - число Маха. 

Решение уравнения (5) при дозвуковом режиме движения 𝑐 < 𝑐1 имеет вид 

𝜑𝑛
0 = 𝐴𝑛(𝜉)𝐾𝑛(𝛽𝜉𝑟∗) + 𝐵𝑛(𝜉)𝐼𝑛(𝛽𝜉𝑟∗); 𝛽 = √1 − 𝑀2 

Подставляя (6) в (2), (3), находим связь между реакцией жидкости и нормальным 
перемещением оболочки: 

𝑞𝑟.𝑛
0 = 𝑝0𝑐

2𝑘𝜉2𝑓(𝜉, 𝑛, 𝑐)
𝜔𝑛

0

ℎ
, 

где для 𝑐 < 𝑐1  

𝑓(𝜉, 𝑛, 𝑐) =
𝑛𝑠4 − 𝛽𝜉𝜀 − (𝑛𝑠2 + 𝛽𝜉𝜀𝑠3)𝑠5

(𝑛 + 𝛽𝜉𝑠1)(𝑛𝑠4 − 𝛽𝜉𝜀) − (𝑛𝑠2 + 𝛽𝜉𝜀𝑠3)(𝑛𝑠5 − 𝛽𝜉𝑠6)
; 

𝑠1 =
𝐼𝑛+1(𝛽𝜉)

𝐼𝑛(𝛽𝜉)
; 𝑠2 =

𝐼𝑛(𝛽𝜉𝜀)

𝐼𝑛(𝛽𝜉)
; 

𝑠3 =
𝐼𝑛+1(𝛽𝜉𝜀)

𝐼𝑛(𝛽𝜉)
; 𝑠4 =

𝐼𝑛(𝛽𝜉𝜀)

𝐼𝑛+1(𝛽𝜉𝜀)
; 

𝑠5 =
𝐾𝑛(𝛽𝜉)

𝐾𝑛+1(𝛽𝜉𝜀)
; 𝑠6 =

𝐾𝑛+1(𝛽𝜉𝜀)

𝐾𝑛+1(𝛽𝜉𝜀)
; 

𝜀 =
𝑏

𝑎
. 

Если оболочка полностью заполнена жидкостью, то формула (3.8) принимает вид 

 
𝑓(𝜉, 𝑛, 𝑐) = (𝑛 + 𝛽𝜉𝑠1)

−1.      (8) 
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Подставляя найденную связь (7) в систему алгебраических уравнений для 
определения коэффициентов разложения трансформант перемещений оболочки, 
находим 

{𝑢𝑛
0 , 𝜔𝑛

0, 𝜔𝑥𝑛
0 , 𝜓𝑥𝑛

0 , 𝜓𝑦𝑛
0 } = −

1 − 𝑣

2𝐺𝑘2
𝑝𝑧,𝑛

{△1,△2,△3,△4,△5}

𝑑𝑒𝑡𝑛‖𝑎𝑘𝑙‖
 

(𝑘, 𝑙 = 1, . . . ,5).   (9) 

Элементы определителей 𝑑𝑒𝑡𝑛‖𝑎𝑘𝑙‖ вычисляются по формулам 
 

𝑎11 = −(1 −
1 − 𝑣

3
𝑐0
2) 𝜉2 −

1 − 𝑣

3
𝑛2; 

𝑎12 = −𝑎21 = 𝑎45 = −𝑎54 = 𝑖𝜉
1 + 𝑣

2
𝑛; 

𝑎13 = 𝑎31 = 𝑖𝜉𝑣; 

𝑎22 = −
1 − 𝑣

2
(1 −

2

3
𝑐0
2)𝜉2 − 𝑛2; 

𝑎23 = −
2 + (1 + 𝑣)𝑘0

2

2
𝑛; 

𝑎25 = 𝑘−1; 𝑎32 = 𝑛; 

𝑎33 = 1 + 𝑘0
2
1 − 𝑣

2
(𝑛2 + 𝜉2) −

1 − 𝑣

3
𝑐0
2𝜉2 [1 +

𝑝0
∗

𝑘
𝑓(𝜉, 𝑛, 𝑐)] ; 

𝑎34 = −𝑖𝜉𝑘0
2
1 − 𝑣

2𝑘
; 𝑎35 = −𝑘0

2
1 − 𝑣

2𝑘

𝑛

𝑘
; 

𝑎43 = 12𝑎34; 𝑎44 = 𝑎11 − 6(1 − 𝑣)
𝑘0

2

𝑘2
; 

𝑎53 = −12𝑎35; 𝑎55 = 𝑎22 − 6(1 − 𝑣)
𝑘0

2

𝑘2
; 

𝑎14 = 𝑎15 = 𝑎24 = 𝑎41 = 𝑎12 = 𝑎51 = 𝑎52 = 0; 

𝑝0
∗ =

𝑝0

𝑝
; 𝑐0 = 𝑐(

3𝑝

2𝐺
)
1
2 

Определители △𝑗 (𝑗 = 1, . . . ,5) получаются из 𝑑𝑒𝑡𝑛‖𝑎𝑘𝑙‖ заменой 𝑗 -го столбцом с 

элементами {0,0,1,0,0}. Подставляя (9) в формулу (7), находим коэффициенты 
Фурье трансформанты давления жидкости 

𝑞𝑟,𝑛
0 = −

1 − 𝑣

3

𝑝0
∗𝑐0

2

𝑘
𝜉2𝑓(𝜉, 𝑛, 𝑐)

△3

𝑑𝑒𝑡𝑛‖𝑎𝑘𝑙‖
𝑝𝑟.𝑛

0  

Для изгибающего момента и поперечной силы в оболочке получаем 

𝑀𝑥,𝑛
0 = −

ℎ𝑎

12
𝑝𝑟,𝑛

0 𝑖𝜉△4𝑛𝑣△5

𝑑𝑒𝑡𝑛‖𝑎𝑘𝑙‖
;      (10) 

𝑄𝑥,𝑛
0 = −

(1−𝑣)𝑘0
5

2𝑘
𝑎𝑝𝑟,𝑛

0 𝑖𝜉△4𝑛𝑣△5

𝑑𝑒𝑡𝑛‖𝑎𝑘𝑙‖
.     (11) 

Окончательное решение получается подстановкой (10)и (11) в ряды Фурье и 
применением обратного преобразования Фурье. В качестве примера рассмотрено 
движение в случае а>b системы l экспоненциально убывающих по длине и 
сосредоточенных вдоль окружности самоуравновешенных внешних нагрузок 
одинаковой интенсивности: 

𝑝𝑟(𝜂, 𝜃) = 𝑝2 𝑒𝑥𝑝( 𝑎𝜂)𝐻(−𝜂)∑ (𝜃 − 𝜃𝑘);
𝑙
𝑘=1    (12) 

𝐻(𝑥), 𝛿(𝑥) -функции Хевисайда и Дирака. 
В этом случае 

𝑝𝑟,𝑛
0 =

𝑝2𝑎𝑛

𝑎−𝑖𝜉
.       (13) 

где 𝑎𝑛 - коэффициенты Фурье функции ∑ (𝜃 − 𝜃𝑘)
𝑙
𝑘=1 . 
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Таблица 1. 

𝜃 

𝑙  

 0 𝜋

10𝑙
  

𝜋

5𝑙
 

3𝜋

10𝑙
 

2𝜋

5𝑙
 

𝜋

2𝑙
 

3𝜋

5𝑙
 

7𝜋

10𝑙
 

4𝜋

5𝑙
 

9𝜋

10𝑙
 

𝜋

𝑙
 

2 -
10,76 

-7,74 3,60 -3,54 2,00 -1,70 0,42 0,02 -1,01 1,16 -1,60 

4 -7,11 -6,27 -4,04 -0,45 1,29 0,08 -1,47 -0,61 1,21 -0,11 -1,70 

6 -4,75 -4,18 -2,91 -1,72 -0,92 -0,31 0,25 0,47 0,04 -0,74 -1,13 

8 -3,94 -3,60 -2,75 -1,78 -1,04 -0,67 -0,53 -0,42 -0,23 -0,02 -0,08 

Таблица 2. 

𝜃 

𝑙   

 0 𝜋

10𝑙
 

𝜋

5𝑙
 

3𝜋

10𝑙
 

2𝜋

5𝑙
 

𝜋

2𝑙
 

3𝜋

5𝑙
 

7𝜋

10𝑙
 

4𝜋

5𝑙
 

9𝜋

10𝑙
 

𝜋

𝑙
 

2 
-
1,97 -0,61 0,96 -6,73 0,57 -0,35 0,15 0,07 -0,23 0,35 -0,31 

4 
-
1,06 -0,20 -0. 11 0,13 0,36 0,08 -0,34 -0,07 0,36 0,04 -0, 35 

6 
-
0,86 

-0,37 -0,01 0,05 0,03 0,03 0,11 0, 17 0,08 -0,09 -1.11 

8 
-
0,71 

-0,45 -0,09 0,07 
0, 12 0,08 0,21 -0,01 0,02 -0,06 0.08 

Если принять 𝑝2 = 2𝜋𝑝1/𝑙. где 𝑝1 - интенсивность соответствую: 

𝜔1
∗ =

𝜔𝐺

𝑝1𝑎
−

1−𝑣

𝑘𝑙
∑ {∫

△3[𝑎 𝑐𝑜𝑠(𝜉𝜂)−𝜉 𝑠𝑖𝑛(𝜉𝜂)]

(𝑎2+𝜉2)

∞

0
} × 𝑎𝑛 𝑐𝑜𝑠(𝑛𝜃) ;∞

𝑛=0                   (14) 

𝑞∗ =
𝑞𝑟

𝑝1
= 𝜔1

∗ = −
2(1 − 𝑣)𝑝0

∗𝑐0
2

3𝑘𝑙
∑ {∫

𝑓(𝜉, 𝑛, 𝑐)𝜉2 △3 [𝑎 𝑐𝑜𝑠( 𝜉𝜂) − 𝜉 𝑠𝑖𝑛( 𝜉𝜂)]

(𝑎2 + 𝜉2) 𝑑𝑒𝑡𝑛‖𝑎𝑘𝑙‖

∞

0

}

∞

𝑛=0

× 𝑎𝑛 𝑐𝑜𝑠(𝑛𝜃) . 
Аналогично с использованием (11), (12), можно записать формулы для 𝑀𝑥, 𝑄𝑥.  

 

Численные результаты. 

 

Для системы без демпфирования предварительно должна быть определена первая 
резонансная скорость путем построения дисперсионных кривых для различного 
числа волн в окружном направлении. Рассмотрение в данном статье ограничено до 
резонансными режимами движения (𝑐 > 𝑐∗) . при которых 𝑑𝑒𝑡𝑛‖𝑎𝑘𝑙‖ не имеют для 
всех значений л корней на действительной оси и несобственные интегралы в 
формулах (14) могут быть найдены по методу Файлона. 

При проведении расчетов использовалось представление дельта-функции 
конечным рядом Фурье с улучшенной сходимостью (12) 
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𝛿(𝜃) =
1

𝜋
[
1

2
+ ∑

𝑁

𝑛𝜋
𝑠𝑖𝑛(

𝑛𝜋

𝑁
) 𝑐𝑜𝑠( 𝑛𝜃)

𝑁−1

𝑛=1

]. 

 
Отметим, что перестановка местами суммирования и интегрирования в формулах 
(14) (что эквивалентно разложению вначале всех величин в ряды Фурье, а затем 
уже применению преобразования Фурье) приводит к значительной экономии 
времени считана ЭВМ, так как вычислив один раз значения интегралов для всех 
необходимых значений л и запомнив полученный массив, эти значения можно 
затем многократно использовать как для различных значений в, так и для 
различного числа нагрузок I. Сходимость интегралов для различных значений  
проверялась путем численных экспериментов на ЭВМ изменением шага и верхнего 
предела интегрирования.  
Расчеты проведены для стальной оболочки, взаимодействующей со слоем воды. 
При этом принимались следующие значения параметров:  

Kg=2/3; к=0,004; е=0,5; v=0,3; а=1,0; р*=0,128; 

𝑐𝑄=0,1 | М=1,687 с<1 - дозвуковой режим 𝑗. 

В силу периодичности приложения сосредоточенных нагрузок по окружности для 
всех случаев приведены значения от места приложения первой силы до середины 
расстояния до второй. Аналогичные распределения для безразмерного 
изгибающего момента 𝑀∗ = 𝑀𝑥/ℎ𝑎𝑝1 и перерезывающей силы Q показаны 
соответственно в табл.1 и 2. Следует отметить, что с ростом числа нагрузок 
уменьшается частота изменения знака в усилиях, т.е. изменение напряженного 
состояния в оболочке становится вдоль направляющей более плавным и при 𝑙 >
20 для оценки напряженно-деформированного состояния можно воспользоваться 
соответствующим осесимметричным решением. 
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