International Journal of Advanced Technology and Natural Sciences ISSN: 2181-144X

DOI: 10.24412/2181-144X-2022-4-4-14 УДК: 661.632:661.56 Тагаев И.А., Темиров У.Ш., Хуррамов Н.И., Мажидов Х.Б.

РЕЗУЛЬТАТЫ АНАЛИЗОВ ПЛАСТОВ ФОСФОРИТОВ НА ДЖЕРОЙ-САРДАРИНСКОМ МЕСТОРОЖДЕНИИ КФК

Тагаев Илхом Ахрорович – к.с-х.н., доц. Навоийский государственный горнотехнологический университет

Темиров Уктам Шавкатович – DSc., доц. Навоийский государственный горнотехнологический университет

Хуррамов Наврузбек Ибраимович – PhD., доц. Навоийский государственный горно-технологический университет, E-mail: <u>nava2121@mail.ru</u>

Мажидов Хаятжон Бахтиёрвич – ассистент Навоийский государственный горно-технологический университет

Аннотация. В настоящее время 1 миллион человек добывается в год. При обогащении 875 000 тонн высококарбонатной редстоунской фосфатной руды образуется 1 158,4 000 тонн остатков обогащения (отработанных руд) с содержанием 11,63% Р2О5. Эти отходы не используются в производстве минеральных удобрений. В работе используются методы химического, физикохимического, ИК-спектроскопического, рентгенографического, массспектроскопического и хроматографического анализа для изучения физикохимического анализа слоев фосфоритов на месторождении Джерой-Сардара КФК. *Ключевые слова: фосфорит, оксид кальция, минерал, пятиокись фосфора, масний*.

КФКНИНГ ЖЕРОЙ-САРДАРА КОНИДАГИ ФОСФОРИТ ҚАТЛАМЛАРИНИ ТАҲЛИЛ ҚИЛИШ НАТИЖАЛАРИ

Тагаев Илхом Ахрорович – қ-х.ф.н., доц., Навоий давлат кончилик ва технологиялар университети

Темиров Ўктам Шавкатович - DSc., доц., Навоий давлат кончилик ва технологиялар университети

Хуррамов Наврузбек Ибраимович - PhD., доц., Навоий давлат кончилик ва технологиялар университети, E-mail: <u>nava2121@mail.ru</u>

Мажидов Хаятжон Бахтиёрвич – ассистент, Навоий давлат кончилик ва технологиялар университети

Аннотация. Ҳозирги кунда йилига қазиб олинадиган 1 млн. 875 минг тонна юқори карбонатли Қизилқум фосфат рудасини бойитишда таркибида 11,63% Р₂О₅ бўлган 1158,4 минг тонна бойитиш қолдиқ (чиқинди руда) лари ҳосил бўлади. Бу чиқинди минерал ўғитлар ишлаб чиқаришда фойдаланилмайди. Ишда кимёвий, физик-кимёвий, ИҚ-спектроскопия, рентгенографик, масс-спектроскопик ва хроматографик таҳлил усулларидан фойдаланиланиб КФК нинг Жерой-сардара конидаги фосфорит қатламларини физик-кимёвий таҳлиллари ўрганилган.

Калит сўзлар: фосфорит, кальтсий оксиди, минерал, фосфор беш оксиди, магний.

RESULTS OF ANALYSES OF PHOSPHORITE LAYERS AT THE JEROY-SARDARINSKY DEPOSIT OF THE KFK

Tagaev Ilxom Axrorovich – candidate of Agricultural Sciences, Associate Professor. Navoi State University of mining and technology

Temirov Uktam Shavkatovich - doctor in technical sciences, associate professor. Navoi State University of mining and technology

Khurramov Navruzbek Ibraimovich - doctor of philosophy in technical sciences, associate professor. Navoi State University of mining and technology, E-mail: <u>nava2121@mail.ru</u>

Majidov Khayatjon Baxtiyorvich- Assistant Navoi State University of mining and technology

Annotation. Currently, 1 million people are mined per year. When enriching 875,000 tons of high-carbonate Redstone phosphate ore, 1,158.4,000 tons of enrichment residues (waste ores) with a content of 11.63% P2O5 are formed. This waste is not used in the production of mineral fertilizers. The work uses methods of chemical, physico-chemical, IR-spectroscopy, radiographic, mass-spectroscopic and chromatographic analysis to study the physico-chemical analysis of phosphorite layers in the Jeroy-Sardara field of KFK.

Keywords: phosphorite, calcium oxide, mineral, Phosphorus Five oxide, magnesium.

Введение. Мировой опыт многих стран свидетельствует о том, что подъем в национальной экономике начинается с сельского хозяйства. Только систематическое внесение минеральных удобрений, и в первую очередь фосфорсодержащих, позволяет повысить продуктивность сельскохозяйственных растений более чем в два раза. Выявленные мировые запасы фосфоритных руд учтены более чем по 60 странам и оцениваются в 63067,4 млн.т P_2O_5 , в том числе 57807,4 млн т фосфоритовых и 5260 млн т апатитовых руд. В пяти странах (Марокко, США, Китай, Россия и Казахстан) сконцентрировано 49493 млн т P_2O_5 , что составляет почти 80% общемировых запасов.

В Узбекистане фосфориты Кызылкума сложены в основном фосфатизированными фаунистическими остатками, скрепленными тонкозернистым кальцитовым цементом [1]. Среди фосфатизированных остатков фауны преобладают фораминиферы с размерами раковин от 0,04 до 0,5 мм. Изотропный и слабокристаллизованный фосфат с точечными включениями кальцита заполняет внутренние полости их раковин. Реликтовый кальцит, сохранившийся от замещения фосфатом, иногда слагает также оболочку и внутренние перегородки раковин. В научно-технической литературе такой кальцит, находящийся внутри фосфатных образований, называют «эндокальцитом», а слагающий цемент породы «экзокальцитом». Третья форма карбоната кальция встречается в виде изоморфно входящей в кристаллическую решетку фосфатного минерала [2].

Целью исследований было определение качественного состава в различных пластах фосфоритов на Джерой-Сардаринском месторождении и отходов в виде минерализованной массы и шламов для подбора усовершенствованных способов дальнейшей их переработки.

Объект и методика исследований. Для определения общего содержания фосфора использован в основном, метод разложения фосфоритов и продуктов их переработки разбавленными растворами кислот (1:1) HNO₃ и (1:1) HCl, извлечением фосфора в форме PO_4^{-3} .

Определение содержания ионов Ca^{+2} и Mg^{+2} в фосфатных продуктах основан на комплексонометрическом титровании их после предварительного удаления фосфатов нитритом висмута $Bi(NO_2)_3$ ·5H₂O.

Определение количества нерастворимого остатка предназначена для установления массовой доли нерастворимых компонентов в сырье методом гравиметрии [3]. Принцип

данного метода основан на отделении нерастворимой в смеси соляной и азотной кислот части анализируемого сырья и прокаливании её до постоянной массы.

Содержание усвояемых форм фосфатов определяли в 2%-ной лимонной кислоте и 0,2 моль/дм³ раствором трилона Б. Методы основаны на извлечении фосфатов растворами лимонной кислоты и трилона Б [4].

Содержание общего азота в продуктах переработки устанавливали методом определения суммы аммиачного и нитратного азота. Сущность метода заключается в восстановлении нитратного азота до аммиачного азота сплавом Деварда с последующей отгонкой аммиака и его титриметрическим определением.

Плотность пульп, образовавшихся в лабораторных и производственных условиях, определяли пикнометрическим методом (V = $25\pm0,015$ мм), а вязкость – с помощью стеклянного капиллярного вискозиметра ВПЖ-1 с ϕ = 1,52 мм при температурах 20, 40, 60 и 80 ⁰C. Плотность пульп, полученных из различных сортов фосфорита, определяли пикнометрическим методом с помощью универсального пикнометра емкостью 25 мл с пробкой на шлифе при различных температурах (20, 40, 60, 80 ⁰C).

Вязкость пульп определяли методом вискозиметрии с помощью стеклянного капиллярного вискозиметра типа КВ Пикевича (диаметр капилляров 1,52 мм) в термостатированных условиях.

Для изучения фазового состава происходящих составно – структурных изменений и идентификации исходных образцов и твердых продуктов использовали физико-химические методы исследования, таких как термография, дериватография, спектрофотометрия, массспектрометрия газовая хроматография, потенциометрия, растровая электронная микроскопия, рентгенофазовый анализ и ИК – спектроскопия.

Дифрактограмма была получена на дифрактометре "Shimadzu XRD-6100" оснащенным с Си трубкой (Ka1= 1.5406 Å,Ka2=1.5443 Å,Ka2/Ka1=0.5c 0.02 thetaшагами от 4 до 85 2theta градусов. Количественный рентгенофазный анализ методом Ритвельда производился на программном обеспечении "Profex–Opensource XRD and Reitveld Refinement" [5,6].

Составно-структурные характеристики исходного сырья изучали на сканирующем электронном микроскопе (MA10, CarlZeiss, Германия) с энерго-дисперсионным элементным анализатором (OxfordInstruments, Великобритания).

Принцип работы СЭМ заключается в сканировании поверхности образца сфокусированным электронным пучком и анализе отраженных от поверхности электронов и возникающего рентгеновского излучения характерного для каждого элемента в результате взаимодействия электронного пучка с веществом [7,8].

Состав изучаемой газовой смеси определяли следующими методами: объемную долю окислов азота в хвостовых газах – титриметрическим методом [9]. Метод основан на поглощении и окислении окислов азота перекисью водорода до азотной кислоты с последующей нейтрализацией раствором гидроксида натрия в присутствии индикатора метилового красного до появления желтого окрашивания раствора. Пробы для анализа отбирали в «эвакуированные» колбы;

- объемную долю окислов углерода в газовой смеси определяли методом газовой хроматографии с использованием хроматографа Хроматек-Кристалл 5000 с детектором теплопроводности. Данный метод газовой хроматографии основан на разделении исследуемой газовой смеси на составные компоненты в хроматографической колонке, заполненной угольным сорбентом.

Изменение pH среды контролировали универсальным иономером И-160МИ, снабженного электродом ЭВЛ-1МЗ.1 и датчиком температуры ТК-06. Стеклянный электрод калибровали стандартными буферными растворами, приготовленными из стандартных норм доз pH = $1,68 \div 9,18$, соответствующий ГОСТу 8.135-74. Содержание P_2O_5 , NO_2^- , NO_3^- определяли фотоколориметрическим и спектрометрическим методами [10]. Содержание

International Journal of Advanced Technology and Natural Sciences ISSN: 2181-144X

 Ca^{+2} , Mg^{+2} определяли комплексометрическим методом и CO_2 – титриметрическим методом [4].

Полученные результаты и их обсуждение. С целью более детальной геотехнологической информации о составе и структуре отдельных компонентов низкосортных фосфоритов в твердой фазе нами проведены исследования методом SEM [11]. Исследования проведены в центре электронной микроскопии и спектроскопии Технологического факультета университета Лидс (Великобритания). Для исследования были подобраны 2 образца минерализованного Кызылкумского фосфорита разных пластов (1 и 2).

Таблица 1.

№ проб	Наименование фосфоритного сырья	Химический состав исходных материалов содержание масс.%:					
		CaO	P ₂ O ₅	CO ₂	F	CaO/ P ₂ O ₅	Si/F
1	І-пласт фосфоритного сырья (ПФС-І)	48,86	17,50	17,04	1,2	2,80	2,50
2	II-пласт фосфоритного сырья (ПФС-II)	48,60	19,03	13,15	2,3	2,56	1,22
3	Минерализованная масса (ММ)	41,30	12,93	17,69	2,3	3,20	1,44
4	Шламовый отход (ШО)	35,42	8,95	14,9	0,9	3,96	6,90
5	Пылевая фракция (ПФ)				••••		

Химический состав исходных фосфоритов и их фракции

После проведенного составно-структурного анализа спектральных результатов РЭМ исследования двух образцов минерализованных фосфоритов (12-14% P₂O₅) в целом установлено, что в низкосортных фосфоритах Центрального Кызылкума содержатся две отличающиеся по химической природе составные части, которые чувствительны к изменению рН среды, что составляет основу существующих основных технологических способов их переработки [12].

Однако, эти формы по химическим свойствам очень чувствительны к действию реагентов сильно основного (щелочного) характера, т.е. в щелочной среде достаточно легко подвергаются химическому разложению. Эта особенность имеет как научное, так и практическое значение в разработке новых нетрадиционных способов, в том числе при разработке щелочного или термощелочного способов переработки различных видов Кызылкумских фосфоритов. Поэтому эта особенность в перспективе требует определенного внимания со стороны ученых и специалистов данной области науки и технологии.

По внешнему виду образцов можно судить, что второй пласт (б) и пылевая фракция содержит определенное количество элементарного углерода, а первый пласт, минерализованная масса кроме фосфоритов содержит карбонатные и силикатные соединения (рис. 1), химический состав образцов приведен в таблице.

Для определения химического и минералогического состава фосфоритного сырья (таблица) нами были проведены рентгенографический, ИК-спектроскопический и дифференциально-термический анализы.

Рентгенофазовый анализ исходного фосфорита (рис. 1), проводили на дифрактометре SHIMADZU 6100 с отфильтрованным медным излучением, при напряжении 25 кV, силе тока 8 мА, скорости движения счетчика 2 град./мин. Отношение дифракционных полос проводили на основе сравнительного анализа значений межплоскостных расстояний и интенсивности полос для апатита, фторкарбонатапатита, кальцита, α - кварца, гипса. Это позволило установить, что дифракционные полосы 3,43; 3,16; 2,79; 2,71; 1,936; 1,877; 1,837;

© International Journal of Advanced Technology and Natural Sciences Vol. 3(4) 2022 SJ IF=3.943

Рис. 1. Рентгенограмма исходного фосфатного сырья Центральных Кызылкумов. а) 1-пласт, б) 2-пласт, в) минерализованная масса, г) шлам после 3-гидроциклона.

1,780 å принадлежат фторкарбонат-апатиту, межплоскостные расстояния 3,03; 2,29; 1,908 å характеризуют присутствие в фосфоритах кальцита. Дифракционная полоса 3,32 å, по всей видимости, принадлежит кварцу. Идентификацию минералогического исходного фосфоритного сырья также определяли методом ИК-спектроскопии. ИК-спектры снимали на спектрометре Irtracer 100 (Shimadzu, Япония) в области частот 400-4000 см⁻¹ (рис. 2). Образцы готовили прессованием в КВг.

nternational Journal of Advanced Technology and Natural Sciences ISSN: 2181-144X

Рис. 2. ИК-спектры исходного фосфатного сырья Центральных Кызылкумов. Линии: 1 после 3-гидроциклона; шлам 2 минерализованная масса; 3 – 2-пласт; 4 – 1пласт.

Google

doi ascent

В ИК-спектрах (рис. 2) фосфорита проявляются явные полосы поглощения, соответствующие антисимметричным валентным деформационным И PO_4^{3-} . иона Понижение колебаниям симметрии правильного тетраэдра PO₄³⁻ до С_{2у} приводит к расщеплению трижды вырожденного колебания на три в области частот 566-800 см⁻¹ и 850-1006 см⁻¹. В спектрах фосфорита частоты колебаний 720; 880, 1300 см⁻¹ относятся к Изменение кальциту. интенсивности полосы 480-500 см⁻¹, характерной для симметричных деформационных колебаний тетраэдров SiO₄⁴⁻.

замещении PO_4^3 0 иона молекуле фторапатита на CO₃²⁻ – группу, вероятно, можно судить по смещению максимумов полосы колебания PO₄³⁻ в высокочастотную область за счет наложения карбонатной полосы в составе фосфоритного поглощения Слабо И средней минерала. cm^{-1}

1650-2000 3600-3800 интенсивности частоты И принадлежат колебаниям кристаллизационной, а также физически адсорбированной на поверхности зерен минералов волы.

Дериватограммы образцов (рис.3) были отсняты на синхронном термогравиметрическом дериватографе LabSys Evo (Setaram, Франция) до 1400 °C, навеска тонкорастертой пробы 150-200 мг, ТГ-200, скорость нагрева образцов 10 град/мин. Потеря массы при нагреве исследуемого образца фосфорита до 1400⁰C, составляет 20,61%.

© International Journal of Advanced Technology and Natural Sciences Vol. 3(4) 2022 SJ IF=3.943 INDEX 🛞 COPERNICUS LIRDARY PIL

Эндоэффекты в области 90-160⁰С соответствуют удалению адсорбированной воды на внутренней поверхности межкристальных минералов, входящих в состав фосфорита и нерастворимой части удобрений. Эндоэффекты в интервале 160-330⁰С отвечают началу удалению конституционной воды минералов и дегидратации гипса из состава образцов. Дальнейшее увеличение температуры сопровождается выгоранием органических веществ, обезвоживанием минералов – примесей.

Широкий неглубокий эндотермический эффект при 330-775⁰С обусловлен наложением эффектов полиморфного превращения кварца, началом декарбонизации кальциевых минералов. Скорость потери массы значительно возрастает в области разложения карбонатных минералов при 775-935⁰С, при этом сопровождающаяся потеря массы образцов до 13,11%, что отвечает, в основном, интенсивному разложению кальцита.

С целью более детальной геотехнологической информации о составе и структуре отдельных компонентов низкосортных фосфоритов в твердой фазе проведены исследования методом растровой (сканирующей) электронной микроскопии SEM (рис. 4 и 5).

Содержание основного компонента _ фосфора колеблется широком в диапазоне от 3,04% (min) до 14,23% (тах) в первом и от 2,96% до 12,54% во втором Это соответствует образце. 4,60% (min) – 22,95% (max) в 4,58-22,90% первом И во втором образце в пересчёте на Р₂О₅. Это свидетельствует о том, что в обоих образцах независимо ОТ места расположения пластов среднее содержание Р₂О₅ составляет 13,74% 13,78% И почти одинакового значения.

Для исследования были подобраны 2 образца минерализованного Кызылкумского фосфорита Для разных пластов. проведения исследований на поверхности каждой таблетки подбирали по пять точек, отличающиеся по внешнему виду – от желто-белого до черно-коричневого цвета И

механической прочности расположенных на различных местах. Из каждого образца были приготовлены таблетки с размерами: диаметром 10 мм и толщиной 4 мм.

Анализ данных электронно-микроскопического исследования показывает, что в двух образцах всего обнаружено присутствие 15 химических (С, О, Na, K, Mg, Al, Si, P, S, Cl, Ca, Ti, Fe, Yb, W) элементов – в первом и 13 – во втором (отсутствуют Ti и Yb) в различных количественных соотношениях.

Содержание элементов (Na, K, Mg, Cl), образующих более водорастворимые составные части фосфоритов, заметно больше во втором, чем в первом пласте образце.

Количество серы, вероятно, в форме сульфатов, также имеет эту же тенденцию, составляя 0,396-1,227% во втором и 0,202-1,018% в первом образце.

Рис. 5. Многоэлементная карта поверхности полученная на сканирующем электронном микроскопе с ЭДС анализаторома) – пласт-I; б) – пласт-II; в) – минерализованния масса

Количество кальция в первом пласте заметно больше и характеризируется широким интервалом (14,97-46,75%) количественного распространения, чем во втором пласте – 17,17-39,80%. Отметим, что в различных частях, где наименьшее содержание кальция наблюдается пропорционально повышенное содержания алюминия от 0,126% (min) до 3,68% (max).

Содержание углерода, в основном в карбонатной форме также имеет некоторый интервал распространения в зависимости от внешнего вида и места расположения точек исследования в обоих образцах. Так в точке 2 не обнаружен, а в остальных частях первого пласта 2,23-3,27% и с некоторым большим интервалом распространения 1,62-3,48% содержится углерод во втором пласте.

Отмечено, что в точках желтовато-белым оттенком обоих образцов, где содержание элементарного фосфора 11,70-12,78% и кремния 0,52-0,87%, обнаружено присутствие вольфрама от 0,86% до 0,98% - в первом и от 0,89 до 0,97% - во втором. Вольфрам в фосфорите, видимо, находится в кислородсодержащей форме солей ионов Na⁺, K⁺, Ca⁺², Mg⁺²фосфорновольфрамовойгетерополикислоты. В единственном случае, в точке5 первого образца, обнаружено наличие иттербия – Yb(0,7%).

Следует обратить внимания на то, что в точках обоих исследованных образцов, где наименьшее количество фосфора, установлены максимальные содержания кремния и кислорода и наоборот. Так в точках с содержанием фосфора 3,04% (min) обнаружено содержаниеSi– 19,50% (max), O– 55,30% (max), а при P – 14,23% (max), содержаниеSi – 0,58%, O – 34,26% (min) в первом. При содержании P – 3,68% (min), обнаружено содержаниеSi – 19,34%, O – 50,14% (max), а при P– 12,85% (max), установлено содержание Si– 0,726%, O – 43,26% (min) во втором образце.Необходимо отметить, что с повышением содержания кремния наблюдается увеличение содержания алюминия от 1,58% до 3,68%. Как известно, что в природных минералах, в том числе кремний находится только в силикатной форме. Судя по совместному присутствию двух близких по радиусу и электронной природе

International Journal of Advanced Technology and Natural Sciences ISSN: 2181-144X

ионов Si⁺⁴ и Al⁺³ можно заключить, что кремний находится в виде [SiO₆] октаэдрических структурных фрагментов (ионов), образуя олигомерной циклической (или линейной) цепочки совместно с определенной долей участия алюминатных [AlO₆] -октаэдров.

Отмечено, что в точках с серовато-белым оттенком в образцах пластов, где содержание элементарного кальция 24,2-2,9% и фосфорита 4,8, 0,87%, обнаружено присутствие бария в пластах 1 и 2 - 3,1 и 3,5% соответственно (рис. 2.5 и 2.6). Необходимо отметить, что с повышением содержания бария наблюдается увеличение содержания элементарной серы от 1,6 до 12,9%. Как известно, в природных минералах, барий находится в сульфатной форме – BaSO₄.

После проведенного составно-структурного анализа спектральных результатов SEMисследования двух образцов минерализованных фосфоритов (12-14% P₂O₅) в целом заключено, что в низкосортных фосфоритах ЦК содержатся две отличающиеся по химической природе составные части, которые чувствительны к изменению pH среды, что составляет основу существующих основных технологических способов их переработки.

Первое – фосфатно-карбонатные составляющие, которые чувствительны к действию водородных H⁺- ионов, на чем основаны традиционные способы промышленной кислотной переработки фосфоритов в действующих химических заводах по производству фосфорных удобрений.

Рис. 6. Номограмма определения содержания CO₂ в зависимости от содержания P₂O₅ и кальциевого модуля в фосфатной руде.

фосфатно-вольфроматное, составляющие, отличающиеся сложностью структуры и высокой твердостью. Обычно эти соединения, имеющий общий состав Me₃[PW₁₂O₄₀]₂ ·xH₂O (Me=Ca⁺², Mg⁺²; x 5÷10) образуют очень прочные полиэдрические кристаллические многогранники, в котором 12 октаэдров WO₆ структурированы вокруг одного тетраэдра PO_4^{-3} . Каждый атом кислорода РО4 – структурной группы является общим для групп из трех октаэдров WO₆. Поэтому, эти составные достаточно устойчивы части К действиям H⁺- ионов и даже при многократном избыточном расходе (120-150%) нормы) кислотного ОТ реагента, а также при высоких температурах не поддаются химическим изменениям. Видимо из-за этого, на наш взгляд при кислотной переработке не всегда удаётся полное вскрытие основного компонента – Р₂О₅.

Однако, эти формы по химическим свойствам очень чувствительны к действию реагентов сильно основного (щелочного)

12

характера, т.е. в щелочной среде достаточно легко подвергаются химическому разложению. Эта особенность имеет как научное, так и практическое значение в разработке новых нетрадиционных способов, в том числе при разработке щелочного или термощелочного способов переработки различных видов Кызылкумских фосфоритов. Поэтому нами были изучены процессы термощелочной активации низкосортных фосфоритов Центральных Кызылкумов с помощью различных неорганических солей.

Как показывают практические данные КФК, особенностью Кызылкумских фосфоритов является их высокая степень карбонатности, т.к. концентрация CO₂ в некоторых пластах достигает 28% и более.

Содержание главных фосфатных минералов - франколита, кальцита и глинистых минералов колеблется в широких пределах и их соотношения определяют технологические стадии их переработки. Нами получена номограмма определения содержания CO₂ фосфоритной руды в зависимости от содержания P₂O₅, и кальциевого модуля в исходном составе.

Из номограммы (рис. 6) видно, что с повышением кальциевого модуля при постоянном значении P_2O_5 содержание CO_2 в фосфоритном сырье повышается. Эта закономерность сохраняется в объеме $C_1C_1C_2C_2C_3C_3C_6C_6$. Полностью в этом объеме фосфоритное сырье состоит в основном из франколита, кальцита и глинистых материалов. При постоянном P_2O_5 с увеличением кальциевого модуля доля кальция в образцах увеличивается и ограничивается плоскостью $C_3C_6C_3C_6$, которая соответствует максимальному содержанию CO_2 и кальциевого модуля в образцах с одинаковыми значениями P_2O_5 . После плоскости ($C_3C_6C_3^{-1}C_6^{-1}$) при очень высоких значениях кальциевого модуля практически отсутствует в глинистых материалах.

Данная номограмма также показывает, что при содержании P_2O_5 в интервале 20-30% с повышением кальциевого модуля, пределы ограничения плоскостью $C_3C_6C_3C_6$ содержания CO_2 и P_2O_5 приближаются к значению 23,97 и 19,24%, соответственно, что показано по линии mm номограммы.

Например, при содержании 30% P_2O_5 с увеличением кальциевого модуля до 1,85 содержание CO_2 изменяется по линии c_2c_3 , а далее по линии $c_3{}^1m^1$. И такая же картина наблюдается при значениях P_2O_5 25 и 20% до значения кальциевого модуля, равного 2,23 и 2,79. Содержание CO_2 изменяется по линии n_2c_4 и n_1c_5 , а с дальнейшим повышением по линии c_4 т и c_5 т соответственно.

Для определения значения содержания CO_2 в фосфоритном сырье также можно применить номограмму. Предположим, нам дан фосфоритный образец с содержанием 20% P_2O_5 , необходимо определить концентрацию CO_2 в образцах при модуле b_1 иаз. Для этого от точки a_1 (20% P_2O_5) проводили параллельную линию к оси АД. От точки b_1 (CaO/P₂O₅=2,1) и a_3 (CaO/P₂O₅ = 2,79) проводим параллельную линию к оси АВ. Линии, проведенные отточек a_1 и $b_1(a_3)$, пересекаются в точках b_2 и c_5 .

От этих точек проводим перпендикуляр к основанию номограммы до пересечения с линей n_1c_5 . Полученные отрезки b_2b_2 и c_5c_5 показывают содержание CO₂, которое равно 12,35 и 23,18% соответственно при CaO/P₂O₅ = 2,1 и 2,79. С такой же последовательностью ведется определение для других образцов.

Эту зависимость можно показать в следующем аналитическом виде:

$$f_{CO2} = (b-1,314) \bullet a_{P2O5} \bullet 0,786,$$

где f_{CO2}- содержание CO₂в фосфоритном сырье, b- кальциевый модуль фосфоритного сырья; а_{P2O5}- содержание P₂O₅в фосфоритном сырье [13,14].

Таким образом, предложена номограмма определения концентрации CO_2 в образцах при заданном модуле фосфоритного образца с определенным содержанием P_2O_5 в интервалах 10-30%.

Список использованные литературы:

1. Федянин С.Н., Снитка Н.П.Геологическое строение и геотехнологические особенности фосфоритов месторождения Ташкура// Тр. респ. научн.-техн. конф. «Актуальные проблемы химической переработки фосфоритов Центральных Кызылкумов». – Ташкент. 2006. С. 12-15.

2. Блисковский В.З., Фатхуллаев Г.Ф., Магер В.О. Вещественный состав Джерой-Сардаринских фосфоритов. -В сб: Геология и вещественный состав неметаллических полезных ископаемых Средней Азии.- Ташкент, изд. САИГИМСа. - 1984. -с. 19-30.

3. Skoog, Douglas; West, Douglas M; Holler, F James (1996). "5: Gravimetric Analysis". Fundamentals of Analytical Chemistry (7th ed.). Fort Worth: Saunders College Publishing Harcourt Brace. pp. 71–96. LCCN 95-067683.

4. Pavia, L., GaryM. Lampman, George S. Kritz, Randall G. Engel (2006). Introduction to Organic Laboratory Techniques (4th Ed.). Thomson Brooks/Cole. pp. 797–817. ISBN 978-0-495-28069-9.

5. Bragg W.H.,(1907). "The nature of Röntgen rays". Transactions of the Royal Society of Science of Australia. 31: 94.

6. Döbelin, N., Kleeberg, R., "Profex: a graphical user interface for the Rietveld refinement programBGMN", Journal of Applied Crystallography 48 (2015), pp.1573-1580.

7. Knoll, Max (1935). "Aufladepotentiel und Sekundäremission elektronenbestrahlter Körper".Zeitschrift für technische Physik. 16: 467–475.

8. Goldstein, G. I., Newbury, D. E., Echlin, P., Joy, D. C., Fiori, C., Lifshin, E., (1981). Scanning electron microscopy and X-ray microanalysis. New York: Plenum Press. ISBN0-306-40768-X.

9. Васильев В. П. Аналитическая химия. Часть 1. Гравиметрический и титриметрический методы анализа. -М.: Высшая школа, 1989. –с. 320.

10. Skoog, D. A., West, D. M., Holler, F. J. Fundamentals of Analytical Chemistry. 7th. ed. - Saunders College Publishing, Fort Worth. 1996. ISBN 0-03-005938-0

11. H.Huber, Chem. Ztg., Chem. Apparatus, № 3, 76; - 4 109 (1969).

12. Uktam Temirov, Nodir Doniyarov, Bakhrom Jurakulov, Najimuddin Usanbaev, Ilkhom Tagayev, and Abdurasul Mamataliyev. Obtaining complex fertilizers based on lowgrade phosphorites. E3S Web of Conferences 264, 04009 (2021). CONMECHYDRO – 2021. © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0

13. Хуррамов Н.И., Нурмуродов Т.И., Эркаев А.У. Исследование процесса получения экстракционной фосфорной кислоты из мытых высушенных фосфоритов // Universum: технические науки: электрон. научн. журн. 2021. 2(83). URL: https://7universum.com/ru/tech/archive/item/11290

14. Донияров Н.А., Тагаев И.А., Асроров А.А., Хуррамов Н.И., Каршиева М.С., Эргашева Ю.О. Основные механизмы микробиологического превращения природных соединений фосфора // Вестник науки и образования № 9(87). Часть З. 2020. С. 9-14